

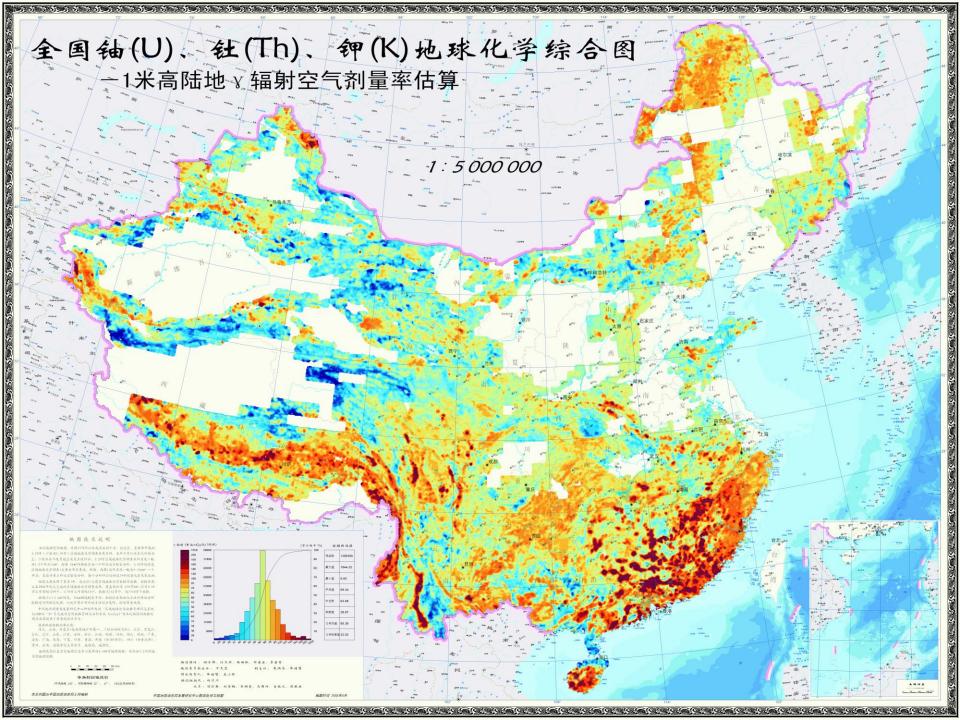
The Situation of NORM in Non-Uranium Mining in China

Liu Hua

Dept. of Nuclear Safety Management, Ministry of Environment Protection, China (National Nuclear Safety Administration)

October, 2011

Introduction


- II Regulations framework
- III NORM situation in non-uranium mining
- IV A case study of Baiyun Obo mine
- V Conclusions and discussion

 According to Law on Prevention and Control of Radioactive Pollution, MEP(NNSA) in China is responsible for regulatory control on radiation protection to NORM.

I Introduction

• In China, the natural radiation exposure levels vary greatly in different areas.

- Natural radiation by human activities is the major contributors to the public and occupational exposure.
- High indoor radiation is caused by using waste or slag with higher radioactivity as building materials.

II Regulations framework

- Law on Prevention and Control of Radioactive Pollution
- Basic standards for protection against ionizing radiation and for the safety of radiation sources (GB18871-2002)
- Technical Requirements for radioactive waste management (GB14500 – 2002)

II Regulations framework related NORM

- Administrative Rules on Prevention and Control of Pollution of Tailings.
- Requirement of Control on Radioactive Substance for Building Material Product and Industrial By-product used in Building Materials (GB 6763-2000)

 The law and regulations in China requests that owner of non-uranium mine should conduct environmental impact assessment on radioactivity, if not exempted

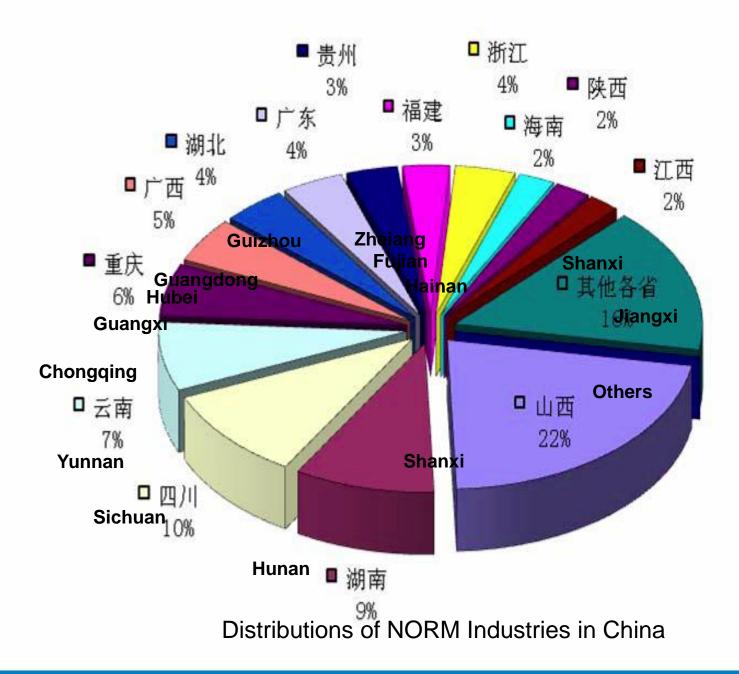
• Currently, MEP is drafting a guideline for nonuranium mines.

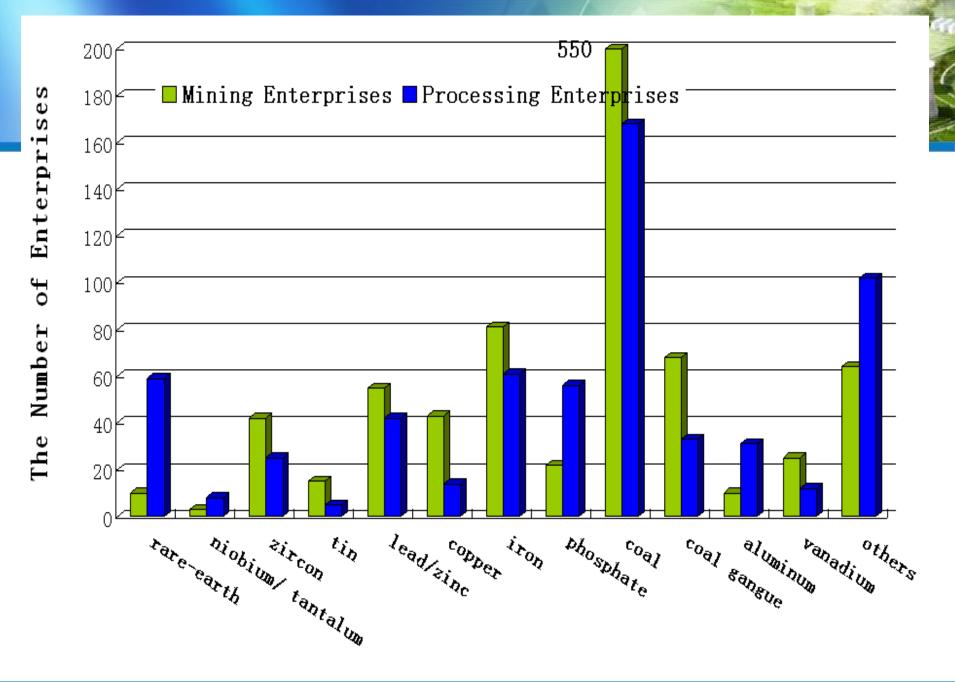
III NORM situation in non-uranium mining

- NORM exposure to public from coal industry
 - normalized collective dose, from air effluent within 80 km, for coal power plant was 16.5 man-Sv/GWa, and for coal gangue power plant was 7000 man-Sv/GWa.
 - Total annual collective effective dose to public from buildings with coal-slag bricks in China was 3,300 man-Sv/a

The First China Pollution Sources Census

- 1 introduction
- FCPSC is national wide comprehensive investigation for target year 2007 on all kinds of pollution sources from industry, agriculture, daily life and pollution treatment centers.
- MEP organized from 2008 to 2009.


For non-uranium mines, total 11 kinds mines


- rare earth
- niobium/tantalum
- zircon and its oxides
- tin
- lead /zinc
- copper
- aluminum
- vanadium
- iron and steel
- phosphate
- coal including coal gangue.

2 NORM industries in non-uranium mining

- Total 11,000 companies in NORM
- Among them, 1,433 companies were monitored in detail. They either produce ores, raw materials (concentrates), or wastes (slag, tailings) with that γdose rate on 1 meter distance is over 50 nGy/h of local background level.

3 Radioactivity in ores and raw materials

 Radioactivity in rare earths, niobium/ tantalum and zircon is high. Average external γ dose rates:

FCPSC

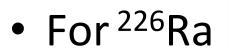
- rare earths, 5,709 nGy/h,
- niobium/ tantalum, 3,263 nGy/h
- Zircon, 1,592 nGy/h.

Their average concentration of 238U, 226Ra or 232Th is more than 1,000 Bq/kg.

National NR adioactivity in Mineral Resources

Elements/ mineral	-	Concentr	External γ dose rate					
	Uranium, Bq/Kg		²²⁶ Ra (Bq/Kg)		Thorium (Bq/Kg)		(nGy/h)	
	Ave.	Max.	Ave.	Max.	Ave.	Max.	Ave.	Max.
Rare earths	3972	78000	2529	30200	5782	137000	5709	32671
Nb/ Ta	4476	21500	18131	57486	2015	9242	3263	8023
Zircon	1289	6500	3510	13935	1733	10200	1592	5830
Tin	218	778	540	4276	133	<mark>8</mark> 72	272	838
lead /zinc	649	34749	465	16274	69	<mark>27</mark> 29	173	1029
Copper	142	1065	163	874	34	183	170	493
Iron	270	6978	288	14265	68	2597	162	1234
Phosphate	396	2735	404	2072.5	26	346	273	1241
Coal	383	167403	212	24021	51	910	153	2552
Coal gangue	171	1321	118	682	82	241	135	242
Aluminum	482	1220	289	798	240	638	323	910
Vanadium	1036	12200	908	3980	1501	27000	280	968
Others	503	5029	744	8048	508	16535	422	5940

		Conce	entrations of	External γ dose rate				
Elements/ mineral	Uranium	n (Bq/Kg)	²²⁶ Ra (Bq/Kg)		Thorium (Bq/Kg)		(nGy/h)	
	Ave.	Max.	Ave.	Max.	Ave.	Max.	Ave.	Max.
Rare earths	2081	83044	1240	53700	4876.3	8560 <mark>0</mark>	3249	48344
Nb/ Ta	7725	<mark>36</mark> 310	7212	34751	4191	21775	1624	7634
Zircon	1026	<mark>9908</mark>	945	7202	327	2120	358	1500
Tin,	922	2850	1377	4350	802	3160	601	1482
lead /zinc	118	715	195	2049	38.4	137	130	303
Copper	142	1630	155	2380	36	145	153	385
Iron	246	6028	247	9908	135	2289	189	1177
Phosphate	123	724	191	1042	35.3	202.4	144	331
Coal	225	7600	326	92178	91	910	162	987
Coal gangue	191	763	79	415	92	212	115	328
Aluminum	402	1398	282	581	349	694	300	615
Vanadium	813	2096	675	1692	73	771	264	760
Others	338	2968	435	4720	119	1390	200	1180



- For Uranium
- There are 117 companies, 8% of 1433 companies
 - -radioactivity concentration \geq 1,000 Bq/Kg
 - annual production of ores and raw materials
 5.9 mil-tons, and use raw materials 2.5 milton.

- For 232Th
- There are 68 companies, 4.6% of 1433 companies.
 - -radioactivity concentration \geq 1,000 Bq/Kg
 - annual production of ores and raw materials
 0.61 mil-tons, and use raw materials
 6.44 mil-ton.

- There are 123 companies, 8.4% of 1433 companies
 - -radioactivity concentration \geq 1,000 Bq/Kg
 - Annual production of ores and raw materials
 2.01 mil-ton, and use of raw materials
 1.35 mil-ton.

IV A case study of China Baiyun Obo mine

- **1** Basic situation of Baiyun Obo mine
- Bayan Obo mine founded in 1954
 - Mining and crashing
 - Bao Tou Iron and Steel Plant (BTISP)
 - -Rare earth plants (1974)

IV A case study of Baiyun Obo mine

- **1** Basic situation of Baiyun Obo mine
- 12×10⁶ t/a of ores from Bayan Obo mine
- 9×10⁶ t/a products of iron and steel
- more than 7×10³ t/a products of oxide equivalent of REO (2006).

Baiyan Obo mine: about 18 Km \times 2 - 3 Km.

East Mine West Mine Baiyan Obo

The BTISP and Baotou City

RE industry
Tailing pond BTISP

Ferrous slag dump

Baotouo包头市

River Huanghe

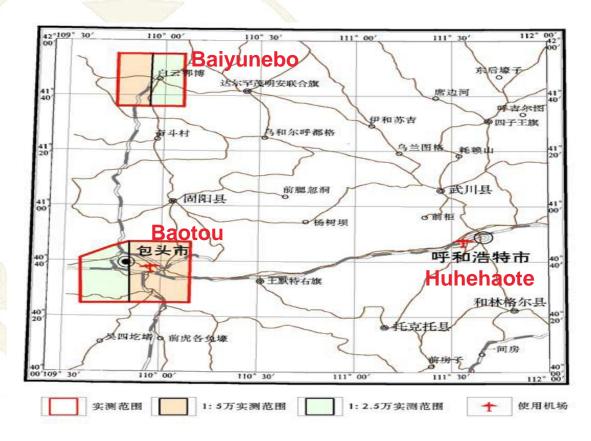
Alle AL

The Baiyan Obo ores are rich in thorium, so it causes a certain radiological impact on both work places and the environment during mining and processing.

2 The Monitoring Program

Aero survey and ground measurements
✓ Work was done during 2006-2009

> Other data


 ✓ The Monitoring Data of Baotou Radioactive Environmental Quality in 2006
 ✓ A Study of Radiological Impact on Baotou Area resulting from Exploitation of Baiyan Obo Ores in 1998

Airborne gamma spectrometry

 ✓ About 2060km² has been flown in 2006.
 ✓ The follow-up ground measurements to verify the sites with elevated levels of radioactivity

> Baiyun:23Km×28Km Baotou:42.5Km×30 Km

Airborne gamma spectrometry

The AGS system was installed in fixing wings aircraft, with large volume(32L) sodium iodide (Nal(TI))detector.

Nal (TI) detector

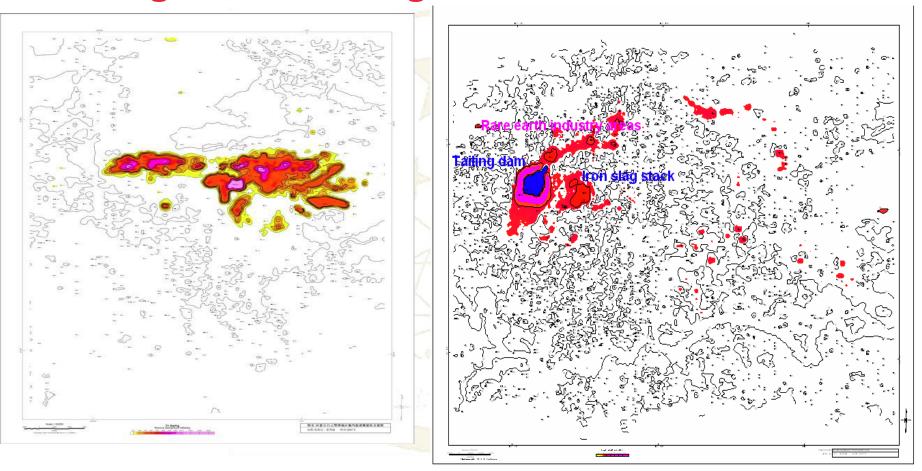
GR-820

Follow up ground work

In Situ HPGe Gamma Spectrometer

The CGS system was installed in jeep, with large volume(4L) , GR460 , Nal(TI) detector.

Follow up ground work



Dose meter

²²²Rn/ ²²⁰Rn and ²²⁰Rn progeny CR-39 detector

Regional Radiological data

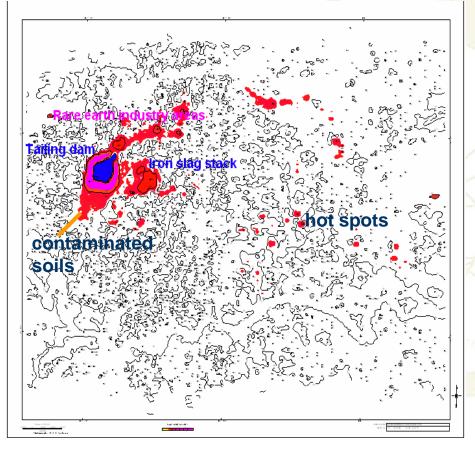
Gamma radiation levels in Baiyunebo

Gamma radiation levels in Baotou

- **3** Exposures and environmental impacts
- (1) Baiyun Obo mine
- Background radiation: 85nGy/h
- Higher radiation area: mining areas, about 55Km², typical 200—800nGy/h
 mining sites 600 2.000nGy/h
 - -mining sites, 600 2,000nGy/h
- Contaminated soil is in upper layer of 10 cm, activity concentration of Th is 80-120 Bq/kg.

Preliminary dose assessment

- occupational exposures:
 - external exposures: 0.24 1.0 mSv/a
 - internal exposures of ²²⁰Rn: 1.84 2.38mSv/a
- public exposures:
 - external exposure in local area is 0.044 mSv/a,
 - internal exposure of ²²⁰Rn is 1.84 mSv/a



(2) Baotou city area and BTISP plant

- Background radiation: 65nGy/h.
- Higher radiation: BTISP, RE plant, about 7Km², typical 500-1,000nGy/h
 - RE plants, 200 600nGy/h, with hot spots
 - BTISP slag stock, 600-2000 nGy/h
 - BTISP tailing pond, 650-1,200nGy/h, if no cover by water
 - Contaminated soil is in upper layer of 20cm, activity concentration of Th is 50-350 Bq/kg.

sites with elevated levels of radioactivity

BG: 65nGy/h (50Bq/Kg for Th) Tailing pond: 650-1200 nGy/ h (11 Km²) Ferrous slag dump: 500-1200nGy/ h The contaminated soil area: 85-150nGy/h 80-200Bq/kg for Th in the upper layer of 10 -20cm. 32 hot spots : 120-1200nGy/h

Preliminary dose assessment

- Occupational exposures:
 - external exposures 0.29 0.61 mSv/a
 - internal exposure by ²²⁰Rn progeny : 1.05-5.27 mSv/a
- Public exposures
 - external exposure: 0.043mSv/a,
 - internal exposure by ²²⁰Rn progeny: 0.02 mSv/a.
 - indoor dose: 1.86 2 mSv/a by construction material

V Conclusions and discussion

- 1 NORM radiation is the major additional dose exposure both to the public and occupational workers. NORM radiation has become an urgent problem
- 2 The regulatory body should draft a list of non-uranium mine for regulatory control, and make related regulations and rules as soon as possible.
- 3 To adopt grade approach of exemption, notification, authorization, 1 Bq/g as exemption level.

4 To improve management system for NORM waste and to develop NORM waste management rules.

- 5 The regulatory body should strengthen supervision NORM.
- 6 Radiation safety training courses should be conducted regularly.

Thank You !